

Emerging patterns mining and automated detection of contrasting chemical features

Alban Lepailleur

Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) UNICAEN EA 4258 - FR CNRS 3038 INC3M - SF 4206 ICORE Université de Caen Normandie, France

- Generalities
- Our contributions

• Case study I : Detection of structural alerts for the mutagenicity endpoint

ċн,

• Case study II : Polypharmacology of kinases

Overview

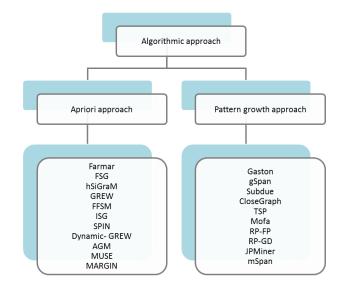
Data mining in chemoinformatics

• With the explosion of the availability of data, we need new methods to identify structure-activity relationships in large databases

• LeadScope, ChEMBL, PubChem, ...

O The calculation of the frequency of a descriptor is often at the core of the process

• Algorithms for the calculation of frequent descriptors often lead to the generation of myriads of such descriptors



Emerging patterns mining

• To limit the number of generated descriptors, methods have been proposed for finding representative and significant subsets

ċн,

Descriptors

• Emerging pattern mining is a data mining technique introduced by Dong and Li that captures differentiating features between 2 classes of data

	Descriptors								
	d1	d2	d3	d4	d5				
mol1	Х				Х				
mol2	Х	Х	Х		Х				
mol3				Х					
mol4	Х	Х							
mol5	Х	Х		Х					
mol6	Х	Х			Х				
mol7					Х				
mol8			Х						
mol9	Х		Х		Х				
mol10	Х		Х						

[1] Dong G. & Li J. Efficient mining of Emerging Patterns: Discovering trends and differences. *Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 5th* **1999**, 43-52.
 [2] *Contrast Data Mining: Concepts, Algorithms, and Applications*; Dong G. & Bailey J., Eds.; CRC Press: Boca Raton, FL, **2013**.

Emerging patterns mining

• To limit the number of generated descriptors, methods have been proposed for finding representative and significant subsets

ċн,

• Emerging pattern mining is a data mining technique introduced by Dong and Li that captures differentiating features between 2 classes of data

			Descriptors	5		
	d1	d2	d3	d4	d5	Emerging Pattern
mol1	Х				Х	(EP)
mol2	Х	Х	Х		Х	
mol3				Х		{d1,d2}
mol4	Х	Х				is supported by
mol5	Х	Х		Х		molecules [2,4,5]
mol6	X	Х			Х	and molecule [6]
mol7					Х	
mol8			Х			Growth-rate
mol9	Х		Х		Х	$\rho = 3$
mol10	Х		Х			

[1] Dong G. & Li J. Efficient mining of Emerging Patterns: Discovering trends and differences. *Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 5th* **1999**, 43-52.
 [2] *Contrast Data Mining: Concepts, Algorithms, and Applications*; Dong G. & Bailey J., Eds.; CRC Press: Boca Raton, FL, **2013**.

Emerging patterns mining

• To limit the number of generated descriptors, methods have been proposed for finding representative and significant subsets

ċн,

• Emerging pattern mining is a data mining technique introduced by Dong and Li that captures differentiating features between 2 classes of data

			Descriptors	5		
	d1	d2	d3	d4	d5	Jumping
mol1	Х				Х	Emerging Pattern
mol2	Х	Х	Х		Х	(JEP)
mol3				X		{d4}
mol4	Х	Х				is supported by
mol5	Х	Х		X		molecules [3,5]
mol6	Х	Х			Х	
mol7					Х	
mol8			Х			Growth-rate
mol9	Х		Х		Х	$\rho = \infty$
mol10	Х		Х			

[1] Dong G. & Li J. Efficient mining of Emerging Patterns: Discovering trends and differences. *Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 5th* **1999**, 43-52.
 [2] *Contrast Data Mining: Concepts, Algorithms, and Applications*; Dong G. & Bailey J., Eds.; CRC Press: Boca Raton, FL, **2013**.

Applications of EP mining in chemoinformatics

○ Auer and Bajorath were the firsts to apply EP mining in chemoinformatics ^{13,41} □ Particularly, they introduced the notion of emerging chemical patterns (ECPs) for molecular classification

 [3] Auer J. & Bajorath J. Emerging Chemical Patterns: A new methodology for molecular classification and compound selection. J. Chem. Inf. Model. 2006, 46, 2502-2514.
 [4] Namasivayam V.et al. Classification of compounds with distinct or overlapping multi-target activities and diverse molecular mechanisms using Emerging Chemical Patterns. J. Chem. Inf. Model. 2013, 53, 1272–1281.

• Sherhod and co-workers also applied EP mining for the identification of toxicophores for various toxicological endpoints

□ Their method has been successfully used to implement new structural alerts for mutagenicity in the Derek Nexus expert system[™]

[5] Sherhod R.et al. Automating knowledge discovery for toxicity prediction using Jumping Emerging Pattern mining. J. Chem. Inf. Model. 2012, 52, 3074-3087.
[6] Sherhod R. et al. Emerging Pattern mining to aid toxicological knowledge discovery. J. Chem. Inf. Model. 2014, 54, 1864-1879.
[7] Coquin L. et al. New structural alerts for Ames mutagenicity discovered using Emerging Pattern mining techniques. Toxicol. Res. 2015, 4, 46- 56.

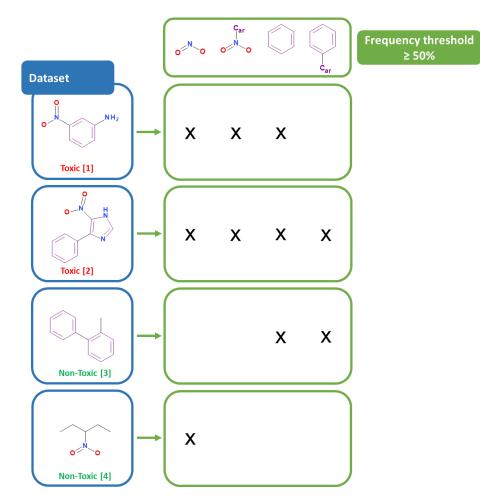
Our contributions

□ We related the occurrences of jumping fragments to aquatic toxicity data^[8] □ We introduced the enumeration of combinations of chemical fragments^[9,10]

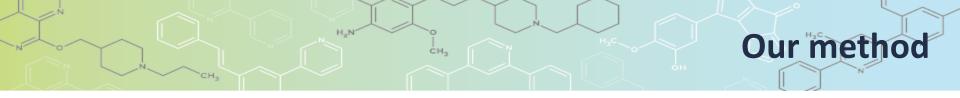
[8] Lozano S. et al. Introduction of jumping fragments in combination with QSARs for the assessment of classification in ecotoxicology. J. Chem. Inf. Model. 2010, 50, 1330–1139. [9] Poezevara G. et al. Extracting and summarizing the frequent emerging graph patterns from a dataset of graphs. J. Intel. Inf. Syst. 2011, 37, 333–353.

[10] Cuissart B. et al. Emerging Patterns as Structural Alerts for Computational Toxicology. In *Contrast Data Mining: Concepts, Algorithms and Applications*; Dong, G., Bailey, J., Eds.; Chapman and Hall/CRC, **2013**; pp 269–281.

• We operate directly from the molecular graphs

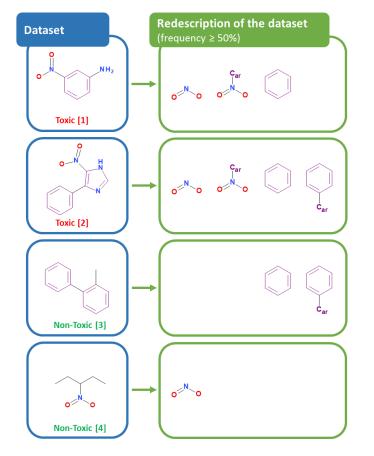


[11] Metivier, J.P. et al. Discovering structural alerts for mutagenicity using Stable Emerging Molecular Patterns. J. Chem. Inf Model. 2015, 55, 925-940



• We operate directly from the molecular graphs

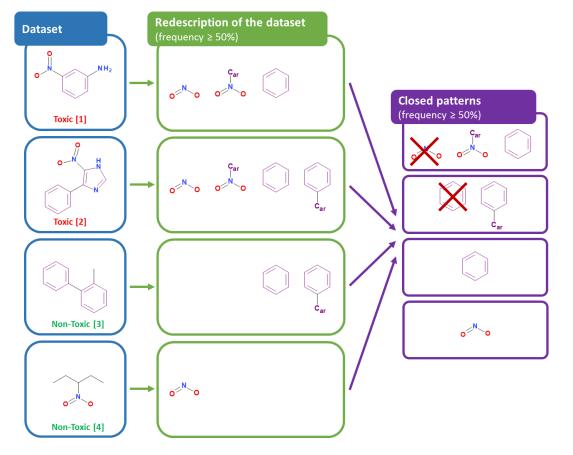
[11] Metivier, J.P. et al. Discovering structural alerts for mutagenicity using Stable Emerging Molecular Patterns. *J. Chem. Inf Model.* 2015, *55*, 925-940



- We operate directly from the molecular graphs
- We enumerate the frequent closed patterns

[11] Metivier, J.P. et al. Discovering structural alerts for mutagenicity using Stable Emerging Molecular Patterns. J. Chem. Inf Model. 2015, 55, 925-940

Our method



ċн,

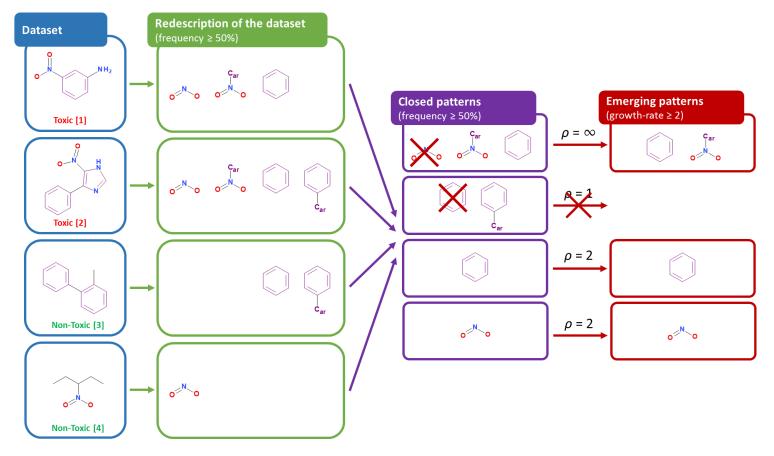
We operate directly from the molecular graphs

[11] Metivier, J.P. et al. Discovering structural alerts for mutagenicity using Stable Emerging Molecular Patterns. J. Chem. Inf Model. 2015, 55, 925-940

Our method

We enumerate the frequent closed patterns to extract the emerging patterns

ċн,

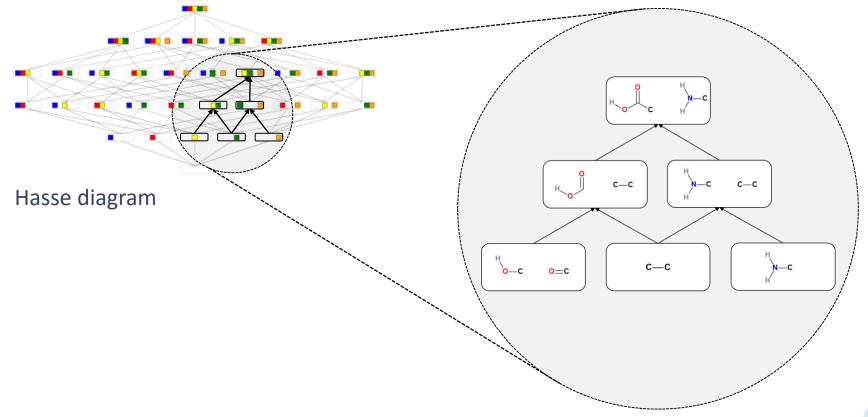


• We operate directly from the molecular graphs

• We enumerate the frequent closed patterns to extract the emerging patterns

ċн,

We organize the patterns in a Hasse diagram



Our method

[11] Metivier, J.P. et al. Discovering structural alerts for

J. Chem. Inf Model. 2015, 55, 925-940

mutagenicity using Stable Emerging Molecular Patterns.

O Search of structural alerts

- One of the most interesting approach of predictive toxicology
- Define the key features of a molecule that are required to initiate a toxicological pathway
- Examples of domain experts rules

□ The Tennant and Ashby's set for DNA reactivity

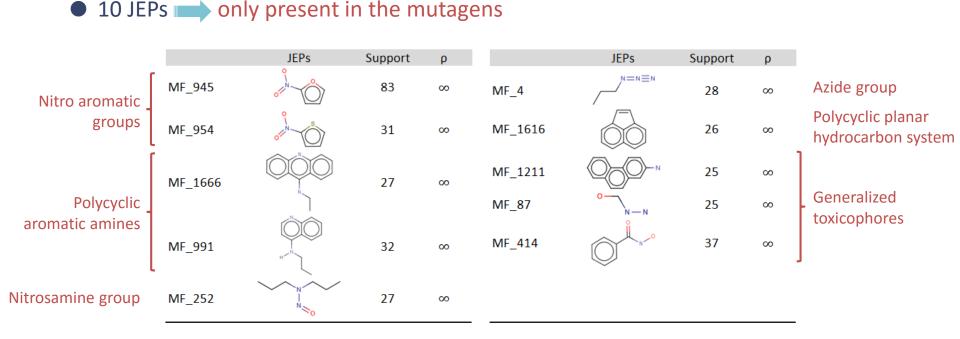
□ The Benigni and Bossa's set for mutagenic and carcinogenic potential

- □ ToxAlerts
- The updating of a knowledge base is very time consuming since it requires strong investment of domain experts and a detailed analysis of the scientific literature

EP mining should reduce the time and efforts needed to identify new structural alerts

O Search of structural alerts for mutagenicity

- The Hansen benchmark dataset (<u>http://doc.ml.tu-berlin.de/toxbenchmark/</u>)
 - □ 6512 compounds from the literature annotated with Ames mutagenicity data
 - 3503 Ames (+) and 3009 Ames (-)
 - □ Use of a 0.36% frequency threshold (support of 20 molecules) 15000 Eps



O Search of structural alerts for mutagenicity

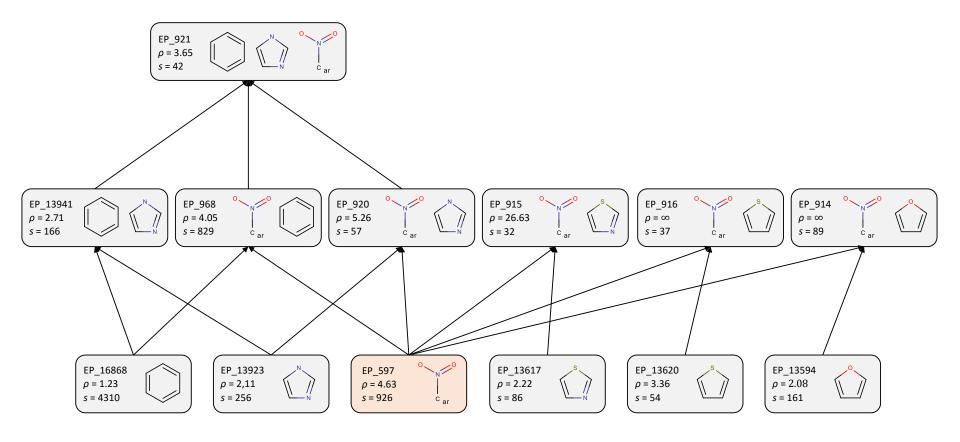
• Comparison with ToxAlerts (<u>https://ochem.eu/</u>) **32** out of 50 toxicophores

-	EPs	Support	ρ	Structural Alert in ToxAlerts		EPs	Support	ρ	Structural Alert in ToxAlerts
MF_73		44	36.94	N-nitroso-N-alkylamides N-nitroso-N-alkylureas N-nitroso-N-alkylcarbamates	MF_134	C _{ar} N	926	4.63	Aromatic nitro groups
MF_0	N≡N	67	27.92	Diazo	MF_444		93	4.47	Nitrogen mustard
MF_1	$N \equiv N \equiv N$	55	22.76	Azide	MF_212		35	4.15	N mustard
MF_125	$\overset{N}{\bigtriangleup}$	52	21.47	Aromatic and aliphatic aziridinyl derivatives	MF_2188	CI	29	4.12	Acyl halides
MF_156		47	12.60	Aromatic hydroxylamine ester	MF_2107		40	4.05	Alkyl ester of sulfonic and sulfuric acids
MF_72	0=N	27	9.09	Nitrosamine	MF_34	N N	74	3.68	Aliphatic azo
MF_1651		178	6.79	Polycyclic aromatic hydrocarbons	MF_1317		26	3.61	Heterocyclic polycyclic aromatic hydrocarbons
MF_1841	CI-	26	6.59	Allylic halides	MF_1883	\land	308	2.33	Aliphatic and aromatic epoxides
MF_824	H H	48	6.01	Hydroxyl amine	MF_916	Car N H	656	2.17	Primary aromatic amine
MF_1667	$\hat{O}\hat{O}\hat{O}$	226	5.84	Polycyclic aromatic hydrocarbons	MF_432	N C	50	1.83	Alkyl carbamate
MF_1831		36	5.33	Monohaloalkene	MF_41		151	1.54	Aromatic azo
MF_75	—»_м—н	162	5.19	Unsubstituted heteroatom-bonded heteroatom	MF_153	∕ _N ≓ ⁰	51	1.33	Aliphatic nitroso
MF_927	N	35	5.16	Aromatic N-acyl amine	MF_169	C _{ar} N	182	1.25	Tertiary aromatic amine
MF_1298	°	27	4.94	Quinones	MF_2197	CI	26	1.17	Aliphatic halogens
MF_920	C _{ar} -N	964	4.70	Nitrosoarenes	MF_1836		59	1.17	α , β -unsaturated carbonyl

O Search of structural alerts for mutagenicity

• Extract of the Hasse diagram

□ Example: stimulation^[12] of aromatic rings by the addition of a nitro group



[12] Bissell-Siders R.et al. On the stimulation of patterns. Lect. Notes Comput. Sci. 2010, 6208, 56-69.

Our interactive visualization tool

947

763

11

87

16

991

s = 62

 $\rho = \alpha$

s = 27

 $\rho = \sigma$

s = 25

ρ = «

s = 32

s = 35

 $\rho = 29.2$

ρ = ∞

21

26

31

36

111

1015

s = 31

s = 29

1446

46

80

s = 26

 $\rho = 21.47$

 $\rho = 24.05$

 $\rho = 25.76$

123

s = 33

= 27.48

48 ρ 30 252

s = 27

 $\rho = q$

s = 31

 $\rho = q$

s = 83

ρ = •

s = 64

s = 34

s = 33

s = 31

s = 28

1270

47

112

s = 26

 $\rho = 21.47$

 $\rho = 23.19$

 $\rho = 25.76$

83

 $\rho = 27.48$

 $\rho = 28.34$

 $\rho = 54.11$

954

12

945

17

22

128

106

1666

s = 27

 $\rho = \sigma$

1616

s = 26

 $\rho = \alpha$

s = 37

 $\rho = \alpha$

s = 45

s = 34

s = 32

s = 30

s = 55

s = 52

43

48

946

125

 $\rho = 22.76$

 $\rho = 21.47$

 $\rho = 24.91$

 $\rho = 26.62$

 $\rho = 28.34$

 $\rho = 37.79$

13

18

110

23

28

78

33

79

993

950

Molecular Fragments

951

952

10

1176

s = 26

 $\rho = 0$

s = 28

 $\rho = q$

s = 37

s = 33

1017

84

40

45

412

997

s = 32

s = 29

s = 26

 $\rho = 21.47$

 $\rho = 24.05$

 $\rho = 26.62$

 $\rho = 27.48$

 $\rho = 30.92$

15

20

25

992

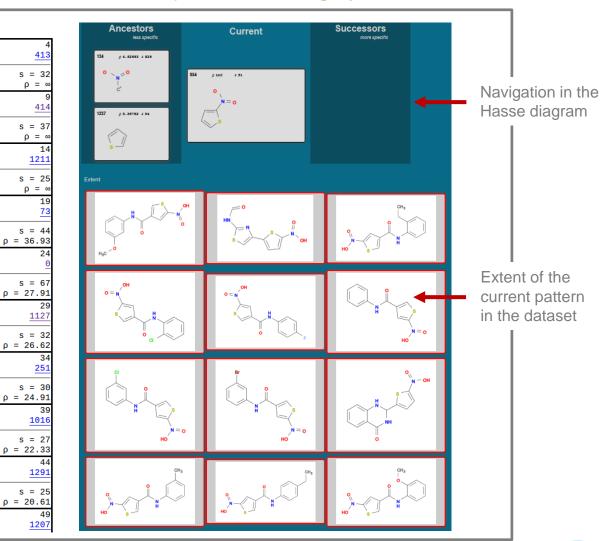
107

s = 31

ρ =

s = 28

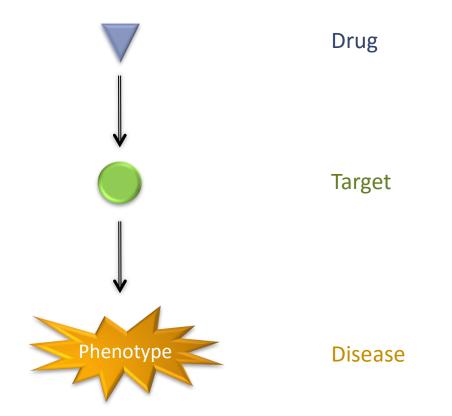
ρ =



https://chemoinfo.greyc.fr/2014_Metivier/

List of patterns

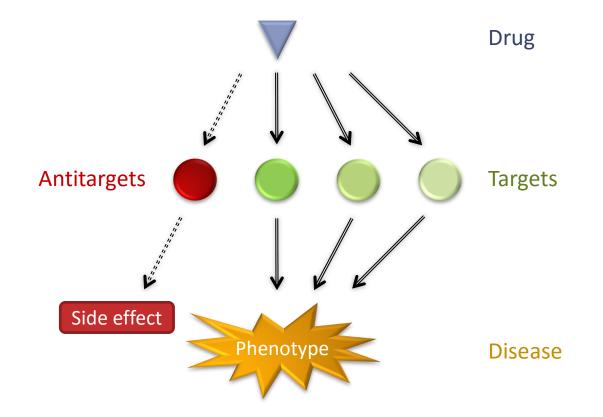
○ The "one drug – one target – one disease" paradigm



○ The "one drug – one target – one disease" paradigm

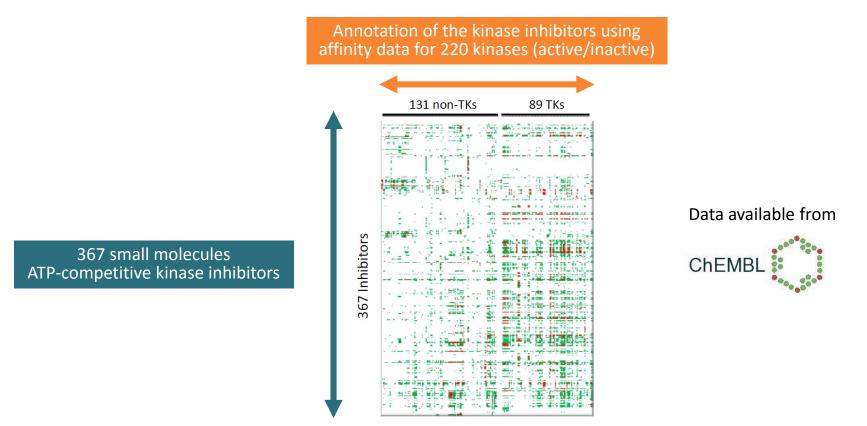
• Polypharmacological drug behavior

- Many known drugs elicit their therapeutic effects by acting on multiple targets
- But such drugs can also bind antitargets responsible for side effects



O Polypharmacology of kinases [13,14]

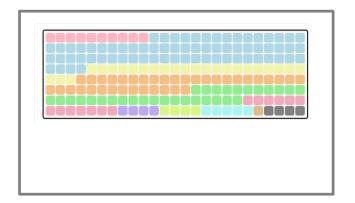
- Most tumors can escape from the inhibition of any single kinase
- The GSK Published Kinase Inhibitor Set (PKIS) as a source of knowledge



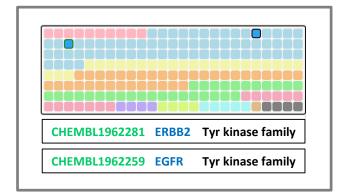
[13] Knight, Z.A. et al. Targeting the Cancer Kinome through Polypharmacology. *Nat. Rev. Cancer* 2010, 10, 130–137.
 [14] Wu, P. et al. Small-Molecule Kinase Inhibitors: An Analysis of FDA-Approved Drugs. *Drug Discovery Today* 2016, 21 (1), 5–10.

O Kinase Miner

Interactive tool dedicated to polypharmacology of kinases

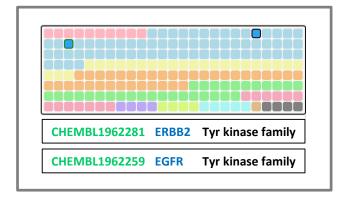


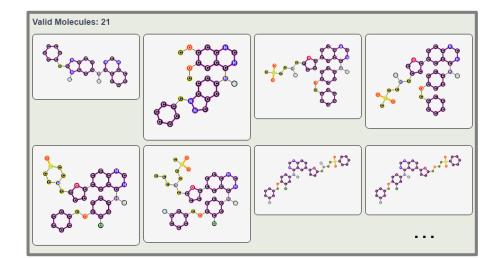
- Interactive tool dedicated to polypharmacology of kinases
- Example: dual inhibition of ERBB2 and EGFR



O Kinase Miner

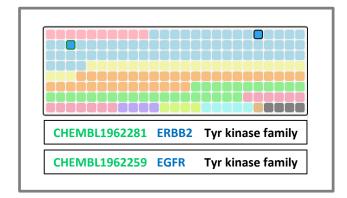
- Interactive tool dedicated to polypharmacology of kinases
- Example: dual inhibition of ERBB2 and EGFR

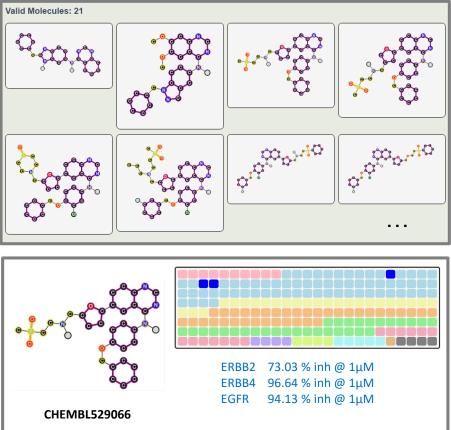




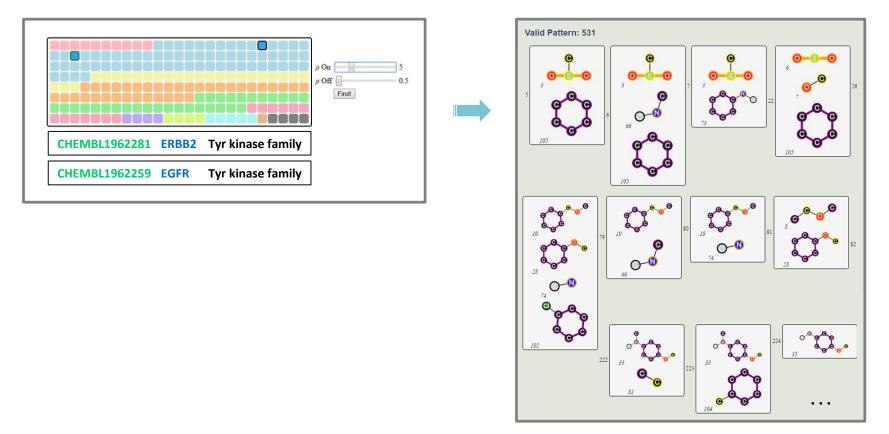
Molecules in agreement with the dual ERBB2 and EGFR inhibition

- Interactive tool dedicated to polypharmacology of kinases
- Example: dual inhibition of ERBB2 and EGFR

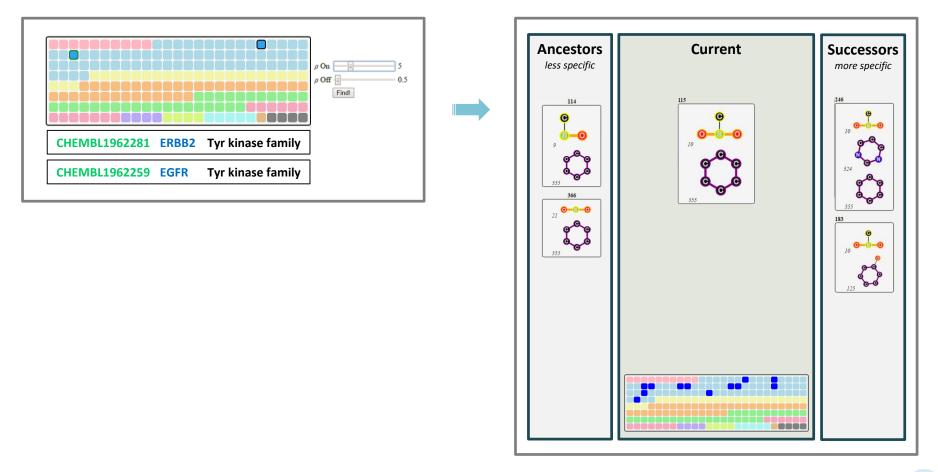




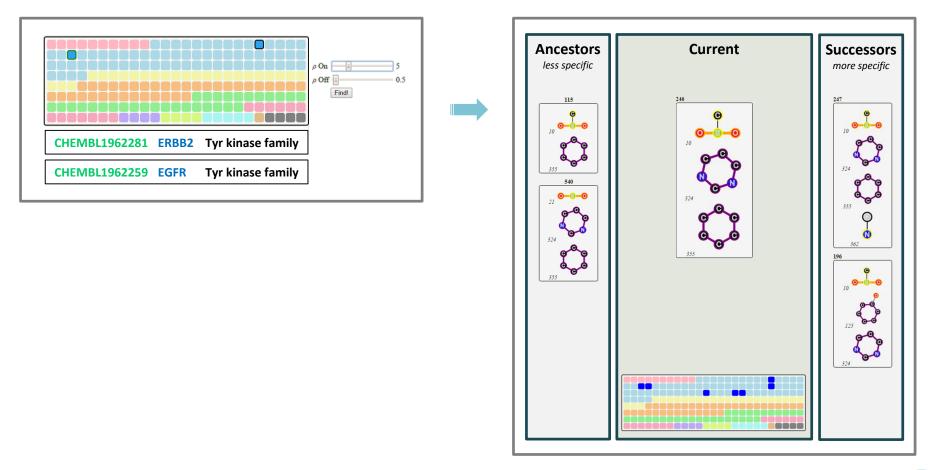
- Interactive tool dedicated to polypharmacology of kinases
- Example: dual inhibition of ERBB2 and EGFR



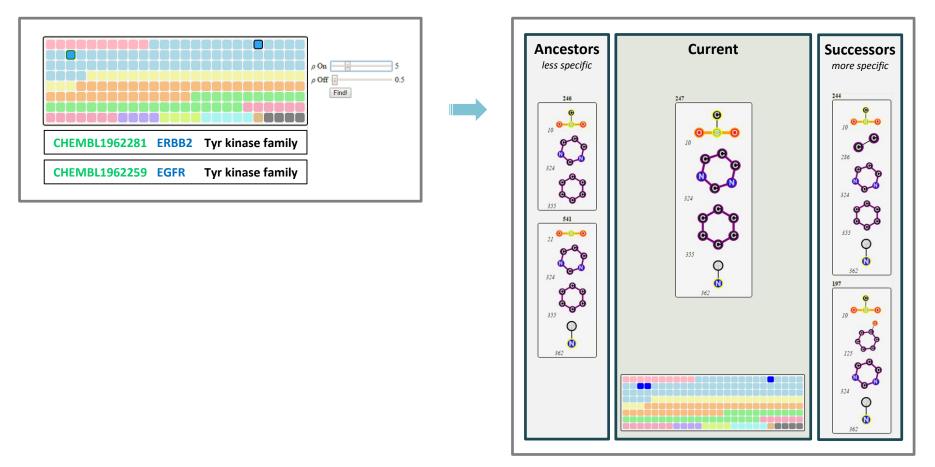
- Interactive tool dedicated to polypharmacology of kinases
- Example: dual inhibition of ERBB2 and EGFR



- Interactive tool dedicated to polypharmacology of kinases
- Example: dual inhibition of ERBB2 and EGFR

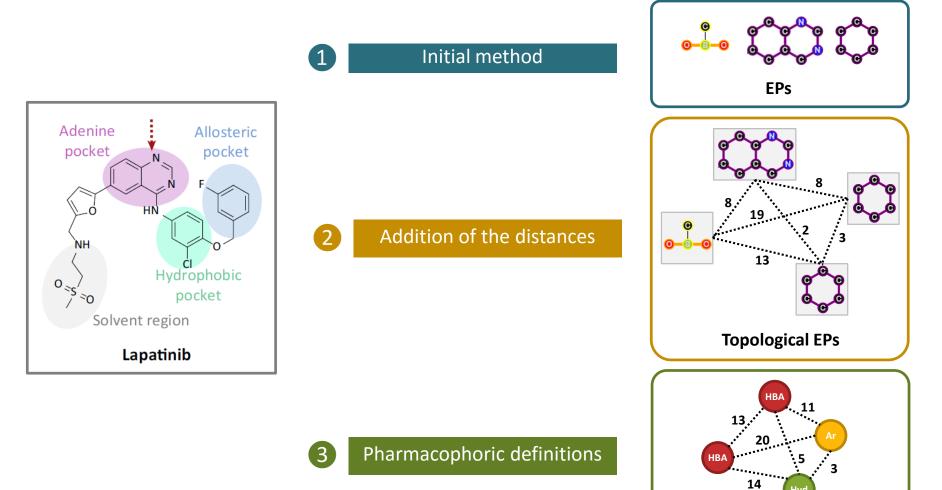


- Interactive tool dedicated to polypharmacology of kinases
- Example: dual inhibition of ERBB2 and EGFR



Last development

2D-pharmacophoric EPs



ċн,

Conclusion and perspectives

• The aim of the EP mining described here is to support the knowledge discovery in large and multidimensional data sets

ċн,

O Validation

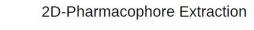
BBCO

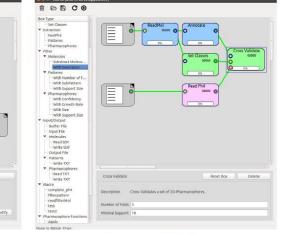
- Identification of toxicophores
- Understanding of the polypharmacological profile of kinase inhibitors

O Development of a workflow tool

Métivier et al. Automated Generation of 2D-Pharmacophores from Large Datasets

Norns: Molecules & Pharmacophores View





Cross-validation

Results as webpages

Poster P17

harmacophore Vi

Acknowledgments

ċн,